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Abstract

A comparison of two-dimensional and three-dimensional high-resolution numerical large-eddy

simulations of planar, miscible Rayleigh-Taylor instability flows are presented. The resolution

of the three-dimensional simulation is sufficient to attain a fully turbulent state. A number of

different statistics from the mixing region (e.g., growth rates, PDFs, mixedness measures, and

spectra) are used to demonstrate that two-dimensional flow simulations differ substantially from

the three-dimensional one. It is found that the two-dimensional flow grows more quickly than

its three-dimensional counterpart at late times, develops larger structures, and is much less well

mixed. These findings are consistent with the concept of inverse cascade in two-dimensional flow,

as well as the influence of a reduced effective Atwood number on miscible flow.
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I. INTRODUCTION

Two-dimensional numerical simulations can provide an economical means for exploring

flow behavior. However, they are only strictly valid when applied to flows that are inherently

two-dimensional, or nearly so, such that variations in the third dimension remain small on

time scales of interest (e.g., [1]). Two- and three-dimensional flows develop quite differently

[2], so the extent to which two-dimensional simulations can be used to represent three-

dimensional turbulent flow is questionable [3]. Here this issue is examined specifically for

Rayleigh-Taylor instability (RTI) flow, which develops when a heavy fluid is accelerated

toward an adjoining light fluid with a perturbed interface. For this type of flow, the key

statistics of interest are typically the rate of growth of the mixing region and the level of

mixing therein.

In previous numerical simulations of RTI flow, it has generally been found for single-

mode or long-wavelength initial perturbations of the heavy-light interface that the mixing

layer grows more rapidly for 3D perturbations than for similar 2D perturbations [4, 5]. The

results have been somewhat more equivocal in RTI flow simulations with initial interfacial

perturbations comprising a broad range of scales. For direct numerical simulations (DNS)

with pseudospectral methods performed by Young et al. [6], the flow started with random-

phase, broadband initial perturbations at the interface and developed to a weakly turbulent

state. The 2D simulations, initialized with planes of data from the 3D simulation, showed

growth rates about half that of the 3D case. The ratio of kinetic energy to released potential

energy in the 2D case was found to be about twice that of the 3D case. Weber et al. [7]

performed 3D and 2D ALE simulations with the broadband initial conditions specified by

the “α-group” [8]; they also used planes of initial 3D data to initialize the 2D runs and found

comparable rates of growth of the mixing region, despite markedly different flow structures.

Youngs [9, 10] found in MILES simulations that the mixing region grew more rapidly at

early times for the 3D case than the 2D case, but that the growth rates were comparable or

even higher for the 2D case at late times as the 3D flow became turbulent. That 2D flow

was initialized with a broadband spectrum analogous to that used in the 3D flow but lower

in dimension. Youngs found that the 2D level of mixing was considerably lower than the 3D

level, and that the 2D kinetic to potential energy ratio was twice that of the 3D ratio.
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The single-mode RTI model developed by Goncharov [11] shows 3D perturbations grow-

ing at a rate
√

3 times faster than 2D perturbations. Bubble-merger models [12, 13] have

been constructed that give comparable rates of mixing layer growth for 2D and 3D per-

turbations. While the 3D single-mode bubble growth is faster in these models, different

geometrical effects of the merging process between 3D and 2D offset this advantage in mul-

timode development.

Recently, very large 3D large-eddy simulations of planar, miscible RTI flow were per-

formed with broadband initial perturbations [14], in which the flow becomes fully turbulent

at late times. The statistics from these 3D RTI simulations are compared here with similar

2D simulations in a flow regime not previously attainable. The simulations are described

briefly in §II; statistics from 2D and 3D simulations are compared in §III; and conclusions

are presented in §IV.

II. CALCULATIONS

A. 3D Simulations

A large three-dimensional (3D) large-eddy simulation (LES) of planar, miscible, incom-

pressible Rayleigh-Taylor instability (RTI) was performed by Cook et al. [14] using a 10th-

order compact finite-difference scheme [15] for spatial derivatives and a third-order pressure-

projection time advancement scheme. Artificial dissipation and diffusion models, as well

as filtering with an 8th-order compact low-pass filter, were applied to stabilize the high-

frequency components of the flow and to control unphysical density excursions; there was

no explicit molecular viscosity or diffusivity used in the calculation. The effective model

Schmidt number (mass diffusion coefficient divided by viscosity coefficient) was observed

to be about 10 in the interior of the developed mixing region and closer to unity near the

pure fluid fronts. The fluid is assumed to be molecularly mixed below grid resolution at

points with intermediate fluid density. The governing equations and numerical techniques

are described in detail in [14].

The 3D RTI flow had a density ratio of 3:1. The initial flow had a slightly diffuse

interface between high and low density regions whose vertical position was seeded with

two-dimensional horizontal perturbations. The perturbations were computed from a two-
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dimensional horizontal spectrum with narrow gaussian band of high-frequency modes with

random phases. The simulation was performed on a 11523 uniform cartesian grid. It was

halted when the largest horizontal structures began to become poorly resolved, i.e., large

scales had developed in the horizontal direction comparable to the size of the numerical

domain, so that the flow was no longer independent of horizontal boundary conditions;

there is also a concomitant reduction of statistical sample of large-scale flow features when

this happens. At late times the flow was fully turbulent and had moved beyond the mixing

transition [16].

B. 2D Simulations

The two-dimensional (2D) simulations used the same code, the same physical parame-

ters, and the same grid resolution as the 3D simulation, but only one horizontal direction

was computed on a 11522 grid. The practical result of this in the governing equations is

that the velocity component and all spatial derivatives in the neglected direction vanish.

Two different types of initial 2D perturbations were chosen corresponding to those used

in previous numerical studies: (1) In case “2Db”, initial perturbations are computed from

a one-dimensional horizontal spectrum with a gaussian bump at high frequencies. These

perturbations have the same spectral shape and amplitude used in the two-dimensional per-

turbations for the 3D simulation, but with a different set of random phases. (2) In case

“2Ds”, initial planes of density are extracted from slices of the initial density field for the

3D simulation. For different runs, different, widely spaced slices are chosen from both hor-

izontal directions to preserve statistical independence. Sixteen 2D runs were performed for

each initial perturbation spectrum to increase the statistical sample, although the work by

Clark [17] suggests that a much larger ensemble may be required to guarantee converged

statistics. The initial horizontal density spectral functions are shown in Fig. 1. The initial

spectra for the 2Db simulations coincide exactly with the initial spectrum from the 3D simu-

lation by design. Note that the initial spectra for the 2Ds simulations contain energy at long

wavelengths; these initial conditions, which are planes of the initial 3D data, contain non-

modal wavenumber contributions from the horizontal direction normal to the transformed

direction, which “alias” [18] to all wavenumbers.
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C. Physical Units

All LES runs have nearly the same initial horizontal integral length for the density per-

turbations, defined by

λ0 =

∫ ∞

0

k−1Eρ(k) dk
/ ∫ ∞

0

Eρ(k) dk , (1)

where Eρ is the horizontal spectral function for density at the initial interface between heavy

and light fluids, and k is the wavenumber. It will be assumed throughout this paper that

the unit of length is λ0, the unit of time is
√

λ0/gA, and the unit of density is the density of

the light fluid ρ1. The Atwood number, A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) = 1/2, is a measure of the

density contrast between the light fluid ρ1 and the heavy fluid ρ2, and g is the magnitude

of the gravity.

III. RESULTS

A. Structure

The difference in structure between 2D and 3D RTI flow at t = 25 is clearly seen in

Fig. 2. At this stage the 3D mixing region is fully turbulent and exhibits fine-scale structure

and large patches of mixed fluid, which appear light grey in the image [14, 19, 20]. The 2D

flow exhibits large chaotic columns and whirls largely composed of pure fluid, and appears

more stirred than mixed. The extent of the mixing regions are roughly comparable, with

interpenetration of the 2D flow somewhat exceeding that of the 3D flow.

B. Growth

The growth of the mixing layer can be measured with integral quantities, such as product

height H [14] or the mixing width W [10], or it can be measured with threshold values, which

tend to be more sensitive to statistical variations. The integral product height is defined in

terms of the horizontal mean of the mole fraction of the heavy fluid X as

H =

∫ ∞

−∞
XP (X) dz , (2)
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where the mole fraction and product mole fraction are given by

X =
ρ− ρ1

ρ2 − ρ1

, Xp(X) =

 X/Xst for X ≤ Xst

(1−X)/(1−Xst) for X > Xst

, (3)

typically using a stoichiometric mixture fraction Xst = 1/2. The integral mixing width [10]

is given by

W =

∫ ∞

−∞
X(1−X) dz . (4)

If the mixing region has a linear profile of X across a height h, then H = h/2 and W = h/6.

The integral product height H is shown in Fig. 3a; W gives the nearly same result at a

factor of 2.9 lower. The “bubble” positions (hb) and “spike” positions (hs) relative to the

position of the initial interface based on the 5% threshold values of mean concentration are

shown in Fig. 3b; the total 5% threshold width is about 1.9H. The mixing width for 2D and

3D runs (by all measures) begins the same. The mixing width for the 2Ds runs is nearly the

same as for the 3D run at early times, while the mixing width for the 2Db runs is slightly

narrower. The long-wavelength component in the 2Ds initial conditions may be responsible

for more rapid initial growth of the mixing region compared with case 2Db. Up to t = 15,

all of the mixing widths remain comparable. At later times, when the flows become better

developed, the mixing width for the 2D runs exceeds that for 3D run by 30–40%. This trend

is generally consistent with the results obtained by Youngs [10].

The growth rate (dH/dt) is shown in Fig. 4 for all 2D runs compared with the 3D run.

Between t = 10 and 20, the 2D flows exhibit rapid growth at a time when the growth of the

3D mixing region slows at the onset of fully developed turbulence [14]. At later times the

acceleration of the 2D flow appears to be comparable to the 3D flow; however this is when

the 2D simulations are losing both large-scale horizontal resolution, which may affect the

growth, and statistical sample.

C. Mixing

A global measure of mixedness based on product (Eqs. 2,3) is given by

Ξ = H−1

∫ ∞

−∞
XP (X) dz . (5)
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Another integral measure of mixedness [10] corresponding to Eq.(4) is given by

Θ = W−1

∫ ∞

−∞
X(1−X) dz , (6)

which was found to be equivalent to Ξ [14]. Figure 5 shows that there are large differences

in the level of mixedness between 2D and 3D simulations. After the initial entrainment at

t = 3, the level of 3D mixedness continues to increase, reaching a plateau at Ξ = 0.79.

On the other hand, the 2D mixedness, after a brief rise, declines to a level of Ξ = 0.53,

independent of initial conditions. Youngs [10] cited values of Θ = 0.83 for 3D versus 0.54

for 2D. This indicates that a substantial amount of pure fluid is being stirred, rather than

mixed, in the 2D simulations.

D. Energy & Vorticity

The ratio of total resolved kinetic energy to released potential energy (KE/PE) is shown

in Fig. 6a. At late times this ratio is about 0.5 in the 3D simulation while it grows to

about 0.9 in the 2D simulations. This is consistent with the findings of Young et al. [6],

who found KE/PE(3D) = 0.42 and KE/PE(2D) > 0.8 at late times in their DNS, and

with Youngs [10], who found KE/PE(3D) = 0.48 and KE/PE(2D) = 0.94. There is thus a

substantially greater conversion of potential energy to kinetic energy in 2D as opposed to

3D, with correspondingly less dissipation. The ratio of vertical kinetic energy to horizontal

kinetic energy is shown in Fig. 6b. The 2D simulations on average have a noticeably higher

ratio than the 3D simulation (about 0.7 versus 0.57 at late times), despite having one —

rather than two — horizontal velocity components.

The total resolved kinetic energy and enstrophy per plane are shown in Fig. 7, where

substantially more kinetic energy is observed at late times in the 2D simulations than in the

3D ones. On the other hand, there is much less large-scale, resolved enstrophy in the 2D

simulations. The measure of enstrophy used here with variable density is Ω ≡ ω2/2ρ (where

ω is the vorticity), which is governed by

∂Ω

∂t
+∇ · (Ωu) = ρ−1

[
ωω: S + ω ·B + ω · (∇× ρ−1∇ · σ)

]
; (7)

S = (∇u+u∇)/2 is the velocity strain tensor, B = ρ−2∇ρ×∇p is the baroclinic vector, and

σ is the viscous stress tensor. The terms on the right-hand side of (7) are the production from
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vortex stretching (which vanishes in 2D flow), production from baroclinicity, and viscous

dissipation and redistribution, respectively. Vortex stretching in 3D turbulent flow is the

mechanism that acts to transfer large-scale energy and enstrophy to small scales [18].

Note, however, that enstrophy is a small-scale quantity, the bulk of which resides in

scales smaller than those resolved — at least in the 3D LES —, so the comparison using LES

results may not be representative of all scales. To remedy this uncertainty, results from early

times in a fully resolved direct numerical simulation (DNS) of RTI were examined, in which

there was no dissipation or diffusion from SGS models, and a negligible amount from the

numerical scheme. The DNS used the same numerical scheme, same 3:1 density ratio, similar

small-scale, multimode initial conditions, and molecular viscosity and mass diffusivity with

average Schmidt number of unity. A corresponding set of 10 2Db simulations were performed.

These DNS results show the same trend in enstrophy as the large-scale LES data (Fig. 8).

During the initial stages, baroclinicity is seen to be the dominant mechanism for generating

enstrophy, but at late times in the 3D flow the vortex-stretching term becomes the dominant

mechanism. Only the baroclinic production operates in the 2D flow, and a substantially lower

amount of enstrophy is generated. Vertical profiles of horizontally averaged kinetic energy

and enstrophy from the DNS are shown in Fig. 9 at a time t = 12.3 when h(5%) = 14.7 in

both 2D and 3D simulations; to facilitate comparison of the distributions, the 2D results have

been scaled in the figures to same mean levels as the 3D results. It is seen that both kinetic

energy and enstrophy in 2D have slightly narrower vertical extents with higher central peaks

than in 3D; the 2D enstrophy is also skewed slightly more toward the heavy-density side of

the domain. Very similar profiles are obtained for resolved kinetic energy and enstrophy in

the LES results.

E. Midplane spectra and statistics

Horizontal power spectra of density and velocity fluctuations about their horizontally

averaged means are computed in the plane (for 3D simulations) or on the line (for 2D simu-

lations) at the position of the initial interface. For the 2D simulations, spectra are computed

in one dimension and averaged over all realizations for the same time. For 3D simulations,

spectra are computed in two dimensions (binned by absolute horizontal wavenumber k), or

in one horizontal direction and averaged over the other horizontal direction. In all cases the
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spectral function Eφ(k) for variable φ is related to the physical fluctuation “energy” by

φ′
2
/2 =

∫ ∞

0

Eφ(k) dk , (8)

where φ′ is the rms value of φ about the horizontal average. The 2D spectra for the 3D

simulations contain a small amount of power at high wavenumbers beyond the nominal (1D)

filter cutoff due to contributions from both horizontal dimensions (i.e., from the “corner”

regions in wavespace).

The spectra from the 2D and 3D simulations are shown in Fig. 10 at moderately late

times when the flow structure is well developed. Because the 2D simulations develop large

scales more rapidly than 3D ones, a time of t = 22.5 is compared with the spectra from

the 3D simulations at t = 30.0 so that the peaks of the power spectra roughly coincide.

Spectra are shown for the horizontal and vertical velocity components and the density. For

all variables the 2D spectra are steeper than their 3D counterparts. The mid-wavenumber

region in the spectrum for the vertical velocity component in the 3D simulation suggests a

k−5/3 dependence, while its 2D counterpart exhibits a steeper slope, closer to k−5/2. The

spectrum for horizontal velocity components from the 3D simulation does not have a dis-

cernable power-law region, but the spectra from the 2D simulations exhibits a region with

k−8/3 dependence. The 2D velocity spectra for RTI have slightly shallower slopes than for

single-density homogeneous turbulence, where k−3 is predicted by theory and observed in

decaying homogeneous 2D flow [2, 21]. The density spectrum shows an approximate k−5/4

dependence in the 3D simulation and again a somewhat steeper k−3/2 dependence in the 2D

simulations. There is pronounced pileup of energy at low wavenumbers for the horizontal

velocity components, as well as for density, in the 2D simulations, which is consistent with

the larger ratios of horizontal to vertical kinetic energy seen in Fig. 6b.

The evolution of corresponding midplane integral lengths,

λφ =

∫ ∞

0

k−1Eφ(k) dk
/ ∫ ∞

0

Eφ(k) dk , (9)

is shown in Fig. 11 for φ = u and w (values for ρ are close to those for w). The 2D integral

lengths for w quickly become twice those for the 3D simulation, and the 2D values for u

become 4 times greater than the 3D ones. At late times, λu for 2D runs is a substantial

fraction of the horizontal numerical domain, which indicates that the 2D flow is becoming

poorly resolved at large scales.
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Probability density functions (PDFs) for the midplane mole fraction of the heavy fluid

X are shown in Fig. 12; these PDFs are averaged over a range of late-time samples when

the distributions are approximately stationary. The 3D distribution (averaged from t = 21

to 35) has a “convex” structure with a peak at X = 0.40 and only small amounts of

pure fluid (X = 0, 1) present. The 2D distribution (averaged from t = 15 to 25) is quite

different, showing a “concave” structure with large amounts of pure fluid, more reminiscent

of the outer, poorly mixed regions of the 3D flow near the spike and bubble fronts. The

PDF distribution in height is shown in Fig. 13 for 3D (at t = 30.0) and 2D (at t = 22.5)

simulations. For 3D simulations, the peak of the distribution marches from light to heavy

as one ascends through the mixing region; there is a broad, well-mixed region around the

midplane with width comparable to H. There is no such region evident in the poorly mixed

2D simulation results.

The history of rms values for midplane density and vertical velocity fluctuations, and

their correlation to one another, are shown in Fig. 14. The 2D rms values exceed their 3D

counterparts considerably at late times when ρ′ and w′/Agt appear to reach asymptotes.

However, the correlation between density and vertical velocity fluctuations is considerably

lower in the 2D flows than in the 3D case, which is symptomatic of a greater amount of

entrained pure fluid in the 2D case. Also, unlike the 3D case, the 2D correlation between ρ

and w continues to drop and does not reach an asymptotic value. Note that the ratio w′/2Agt

is defined by Ramaprabhu & Andrews [22] as a measure of the acceleration coefficient α for

quadratic growth. In the 3D simulation this ratio asymptotes at late times to a value of

0.033, while the 2D simulations produce 0.055. A better overall collapse of the simulation

data is obtained in Fig. 14b using the effective Atwood number Ae = ρ′/ρ instead of A to

scale w′; late-time values of w′/2Aegt are about 0.068 for the 3D case and 0.076 for the 2D

case. These results are consistent with the idea that reduced effective Atwood number in

3D miscible flow is associated with slower growth of the mixing region [14, 23]. Note that

the reduction in Ae in the LES is a result of mass diffusion by the SGS model and can

be considered “physical” to the extent the model is representative of turbulence processes

affecting the resolved scales.
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IV. CONCLUSIONS

Using two-dimensional and three-dimensional large-eddy simulations of Rayleigh-Taylor

instability with similar initial conditions, we find that the 2D cases produce roughly compa-

rable growth rates to 3D cases in the early stages of nonlinear growth, but at late times the

3D flow becomes fully turbulent and its growth becomes substantially slower than the 2D

case. This is consistent with previous observations by Youngs [10]. The 2D flow, unlike the

3D flow, does not become well mixed at late times, as made evident by flow field structure,

PDFs, and direct measures of mixedness.

The 2D RTI flow develops larger structures more rapidly than the 3D flow, especially in

the horizontal velocity component, and a much larger fraction of released potential energy

winds up in kinetic energy. This is consistent with the standard picture that in 3D RTI there

is energy transfer both to large scales due to mode coupling and to small scales due to the

turbulent energy cascade, while in 2D flow experiences vortex pairing and energy transfer

that is preferentially toward large scales.

While 2D simulations of fully 3D RTI flows may provide a rough estimate of growth

rates at early times, they do not produce accurate late-time turbulent growth rates and

mixing statistics, and they are clearly no substitute for full 3D simulations. While attempts

to re-tune subgrid-scale models to account in a crude way for lower dimensionality have

had modest success in improving predictions for some statistics in convective flows, it is

recognized that the resulting 2D pseudo-structures are not physical representations of real

3D flow [3]. Nor is it clear at this point if such an approach is viable for RTI applications.

Finally, models of RTI growth that attempt to distinguish between 2D and 3D growth at

late time need to take account of the very different physical mechanisms that operate in

each case.
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V. FIGURE CAPTIONS

FIG. 1: Midplane horizontal power spectra of density at t = 0 for the 3D and 2Db simulations

(thick line) and the 2Ds simulations (thin line). The 3D and 2Db spectra are identical by

design.

FIG. 2: Vertical slice of density from the 3D simulation (top) compared with the density

field from a 2D simulation (bottom), both at t = 25. Black is heavy fluid, and white is light

fluid.

FIG. 3: (a) Integral product height and (b) 5% threshold values of mean density for the

3D (solid lines), 2Db (dashed lines) and 2Ds (dot-dashed lines) simulations. The standard

deviation in the 2D runs is about 7% in (a) and 10% in (b) at late times.

FIG. 4: Growth rate of the integral product width for 3D (solid line) and 2D (dashed

line) simulations. The dotted line is a linear fit to the 3D data at late times, giving an

acceleration coefficient αH ≈ 0.025, corresponding to α ≈ 0.027 for bubble growth based on

a 1% threshold [14].

FIG. 5: Mixedness measure Ξ for 3D (solid line), 2Db (dashed line), and 2Ds (dot-dashed

line) simulations. The standard deviation is about 7% at late times for the 2D runs. Values

for Θ are nearly identical.

FIG. 6: (a) The ratio of total resolved kinetic energy to released potential energy and (b)

the ratio of total resolved horizontal to vertical kinetic energy for the 3D (solid line), 2Db

(dashed line) and 2Ds (dot-dashed line) simulations. The standard deviation at late times

in the 2D runs is about 1% in (a) and 15% in (b).

FIG. 7: Total resolved (a) kinetic energy and (b) enstrophy from 3D LES (solid lines) and

2D LES (dashed lines), normalized per plane.

FIG. 8: (a) Global enstrophy and (b) global enstrophy production rates from vortex stretch-

ing and baroclinicity from 3D DNS (solid lines) and 2D DNS (dashed lines), normalized per

plane.
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FIG. 9: Vertical profiles of horizontally averaged (a) kinetic energy and (b) enstrophy from

3D DNS (solid lines) and 2D DNS (dashed lines) at t = 12.3 and h(5%) = 14.7; the 2D

kinetic energy was scaled by a factor of 0.502 and the 2D enstrophy by 2.71.

FIG. 10: Midplane horizontal power spectra of (a) vertical velocity component, (b) horizontal

velocity components, and (c) density for the 3D simulations at t = 30.0 (solid lines), and for

the average of all 2D simulations at t = 22.5 (dashed lines). Reference slopes are indicated

by the short fiducial lines.

FIG. 11: Midplane horizontal integral lengths of horizontal velocity components (u, dashes)

and vertical velocity component (w, solid) for the 3D and 2D simulations. The horizontal

domain size is L = 144 for comparison.

FIG. 12: Probability density functions of the midplane mole fraction of the heavy fluid for

the 3D (solid line) and 2D (dashed line) simulations.

FIG. 13: (Color online) Probability density functions of the mole fraction of the heavy fluid

X versus height for (a) 3D simulations att = 30.0 and (b) 2D simulations at t = 22.5.

FIG. 14: Midplane density and vertical velocity fluctuations for the 3D (solid lines) and 2D

(dashed lines) simulations. In (a) the correlation coefficient for density and vertical velocity

fluctuations C(ρ, w) is also shown.
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